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Abstract
The cases of under-, critical- and over-damping are treated for the quantum
driven harmonic oscillator. Following a survey of the classical version, the
quantum invariant operator for each case is constructed and their eigenvalues
are evaluated. Using these eigenvalues and the Schrödinger equations, the
wavefunctions are obtained for each case. From formal path integral theory,
their propagators are evaluated and are checked with those obtained by the
closed property formed by the complete set of wavefunctions.

PACS number: 03.65.Ge

1. Introduction

The damped driven harmonic oscillator provides many opportunities for basic studies and
simple models in classical mechanics, perhaps exceeded only by those of the simple harmonic
oscillator [1]. This offers a fundamental exercise as well as applications for dissipative systems
or systems subject to an external field. There are three general cases for damping motion:
under-, critical- and over-damping, which are distinguished through the damping constant and
the frequency. Only the case of under-damping results in oscillatory motion. Hence, while
much attention has been paid over the past few decades to analysing the quantum damped driven
harmonic oscillator [2–5], only for the case of under-damping has the oscillatory motion been
treated quantum mechanically.

In this paper, we treat the under-damped driven harmonic oscillator as well as the critical-
and over-damped driven harmonic oscillators quantum mechanically. In section 2, we first
survey the damped driven harmonic oscillator classically. In a previous paper we showed that
there are innumerable classical Hamiltonians or Lagrangians which give the same classical
solutions of a given system [6, 7]. In this paper we select the Hamiltonians which are related

0305-4470/01/377719+14$30.00 © 2001 IOP Publishing Ltd Printed in the UK 7719

http://stacks.iop.org/ja/34/7719


7720 K-H Yeon et al

to what we call the Kanai Hamiltonian, although the equation of motion of a damped driven
harmonic oscillator can be found by any other Hamiltonian among innumerable ones [6, 7].

We obtain the eigenfunction of the quantum invariant operator and the Schrödinger solution
for the three cases of the damped driven harmonic oscillator. In a previous paper we proved
that the quantum Hamiltonian is obtained from the classical Hamiltonian by replacing the
canonical variables with their corresponding quantum operators [7], and we use that approach
to select the quantum Hamiltonian corresponding to a classical Hamiltonian. We evaluate the
quantum invariant operator whose time derivative is zero. Although there are innumerable
kinds of this operator, we select a quadratic one. It is well known that the Schrödinger solution
of a system can be found by the eigenfunctions of the invariant operator by considering phase
factors, which we do for the three cases.

In section 3, we evaluate the propagator for the three cases of the damped driven harmonic
oscillator. The propagator of the quadratic Hamiltonian can be obtained as the product of the
exponentiated phase, composed of the classical action, and its amplitude [8]. The result of
the classical system in section 2 gives the classical action for the three cases. With this result,
we evaluate the propagator for the three cases of the damped driven harmonic oscillator. The
closed property formed by the wavefunctions also gives the propagator [8]. We check the
propagator with that obtained by this method. The summary and conclusions are presented in
section 4. Finally, for supporting material, in the appendix we calculate the Green functions for
both one- and two-point boundary conditions for the above three cases; with these functions,
we review the general and particular solutions of the three cases, and with an example, we
examine the solution after a sufficiently long time compared to the inverse damping parameter.

2. Quantum invariant operator and wavefunction of three cases of the damped driven
harmonic oscillator

Although there are innumerable classical Hamiltonians of the damped driven harmonic
oscillator [7], among them we choose the Hamiltonian for the system as

H = e−αt p
2

2m
+ eαt m

2
(ω0

2x2 − 2f (t)x). (1)

The corresponding Lagrangian is

L = eαt m

2
(ẋ2 − ω0

2x2 + 2f (t)x). (2)

The canonical momentum conjugate to x is

p = eαtmẋ (3)

and the classical equation of motion of the system is

ẍ + αẋ + ω0
2x = f (t). (4)

We know that there are three general cases of the solution of (4), that is, the case of the
under-damped driven harmonic oscillator

−ω2 ≡ α2

4
− ω0

2 < 0 (5)

the critical-damped driven harmonic oscillator

α2

4
− ω0

2 = 0 (6)
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and the over-damped driven harmonic oscillator

β2 = α2

4
− ω0

2 > 0. (7)

The general solution of (4) for the three cases is presented in the appendix.
The Schrödinger equation of the system is

ih̄
∂�(x, t)

∂t
= Ĥ (p̂, x̂, t)�(x, t) (8)

where Ĥ (p̂, x̂, t) is the quantum Hamiltonian, which is obtained by replacing the canonical
variables of the classical Hamiltonian, equation (1), with the corresponding quantum
operator [7]. The quantum invariant operator satisfies

ih̄
∂Î

∂t
+ [Î , Ĥ ] = 0. (9)

The eigenfunctions of the invariant operator Î (p̂, x̂, t), defined as

Î (p̂, x̂, t)φ(x, t) = λφ(x, t) (10)

are related to the general solutions of the Schrödinger equation, (8), for the discrete eigenvalue
as

�(x, t) =
∑
λ

cλ�λ(x, t) =
∑
λ

cλeγλ(t)φλ(x, t) =
∑
n

cneγn(t)φn(x, t) (11)

and for the continuous eigenvalue as

�(x, t) =
∫

dλ�(λ, x, t) =
∫

dλ eγ (λ,t)φ(x, t, λ). (12)

Here, cλ is an arbitrary constant, not dependent on λ; γλ and γ (λ) are a constant and function to
be determined; and cn is related to cλ, where the subscript n is the number within the sequence
of discrete energy eigenvalues [6].

There are an innumerable number of invariant operators which satisfy (10) [7]. Among
them, we are interested in the quadratic invariant operator. Using equations (8) and (9), the
quadratic invariant operators of the under-, critical- and the over-damped driven harmonic
oscillators can be obtained as [6]

Î (p̂, x̂, t) = 1

2

[
1

m
e−αt (p̂ − pp)

2 + meαtω2
0(x̂ − xp)

2

+
α

2

[
(x̂ − xp)(p̂ − pp) + (p̂ − pp)(x̂ − xp)

] ]
(13)

Î (p̂, x̂, t) = 1

2m

[mα

2
e

α
2 t (x̂ − xp) + e− α

2 t (p̂ − pp)
]2

(14)

and

Î (p̂, x̂, t) = 1

2

[
1

m
e−αt (p̂ − pp)

2 + mω2
0eαt (x̂ − xp)

2

+
α

2

[
(x̂ − xp)(p − pp) + (p̂ − pp)(x̂ − xp)

] ]
(15)

respectively, where xp = xp(t) and pp = pp(t) are the particular solutions of the classical
equation of motion, equation (4), and its corresponding canonical momentum, respectively.
We treat these in the appendix.
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First, let us obtain the Schrödinger solution for the under-damped driven harmonic
oscillator. The invariant operator (13) can be represented by the creation and the annihilation
operators as [6]

Î (â, â†) = h̄ω(â†â + 1
2 ) (16)

where

â =
(

e−αt

2mh̄ω

)1/2 [
meαt

(
ω + i

α

2

)
(x̂ − xp) + i(p̂ − pp)

]
(17)

and

â† =
(

e−αt

2mh̄ω

)1/2 [
meαt

(
ω − i

α

2

)
(x̂ − xp) − i(p̂ − pp)

]
. (18)

If [x̂, p̂] = ih̄ holds, â in (17) and â† in (18) naturally satisfy

[â, â†] = 1. (19)

We know that the ground eigenfunction of (16), denoted by φ0, satisfies [6]

âφ0(x, t) = 0 (20)

and the excited eigenfunction can be obtained by

φn(x, t) = 1√
n!

â†nφ0(x, t). (21)

Thus, with (17), (18) and (20), (21) gives the eigenfunction of the invariant operator (13) as

φn(x, t) =
(√

mω/πh̄

2nn!

)1/2

e
α
4 t Hn

[√
mω

h̄
e

α
2 t (x − xp)

]

× exp
[
−mω

2h̄
eαt (x − xp)

2
]

exp

[
− i

h̄

mα

4
eαt (x − xp)

2

]
ei

pp
h̄
x . (22)

Substitution of (22) with (11) into (8) gives

γn(t) = −iω

(
1

2
+ n

)
(t − t0) − i

h̄

∫ t

t0

dt eαt

(
m

2
ẋ2

p − mω2
0

2
x2

p

)
(23)

from which we obtain the exact wavefunction of the nth state of the system as

�n(x, t) = exp

[
−iω

(
1

2
+ n

)
(t − t0) − i

h̄

∫ t

t0

dt eαt

(
m

2
ẋ2

p − mω2
0

2
x2

p

)]

×
(√

mω/πh̄

2nn!

)1/2

e
α
4 t Hn

(√
mω

h̄
e

α
2 t (x − xp)

)

× exp
[
−mω

2h̄
eαt (x − xp)

2
]

exp

[
− i

h̄

mα

4
eαt(x−xp)

2

]
ei

pp
h̄
x (24)

where t0 within the phase is the starting time of the driving force. The phase of the wavefunction
is represented by the classical action composed of the classical particular solution. This means
that the phase of the wavefunction depends on the past time.

From (17) and (18), we obtain expressions for x̂ and p̂ in terms of â and â† as

x̂ =
(

h̄

2mω

)1/2

e− α
2 t
(
â† + â

)
+ xp (25)

p̂ = −i

(
eαtmh̄ω

2

)1/2 [( iα

2ω
+ 1

)
â +

(
iα

2ω
− 1

)
â†

]
(26)



The quantum under-, critical- and over-damped driven harmonic oscillators 7723

respectively, where
[
x̂, p̂

] = ih̄ is preserved. Using (25) and (26), we obtain the uncertainty
relation as

(�x�p)n,n =
(

α2

4ω2
+ 1

)1/2

h̄

(
n +

1

2

)
(27)

and we also find the expectation of the energy operator to be

En = e−2αt 〈p̂2〉
2m

+
m

2
ω2

0

〈
x̂2
〉

= e−αt h̄ω

2

(
α2

4ω2
+

ω2
0

ω2
+ 1

)(
n +

1

2

)
+ e−2αt

p2
p

2m
+

m

2
ω2

0x
2
p . (28)

The energy term including the number n is damped out, but the last term, which constitutes the
classical energy by the particular solution, is conserved. Thus, if t is large compared to 1/α

E = e−2αt
p2

p

2m
+

m

2
ω2

0x
2
p . (29)

This result is the classical solution which does not depend on the state. For example, if
f (t) = f0 cos γ t , the particular solution is obtained as (A.27). Then

E = m

2
ẋ2

p +
m

2
ω2

0x
2
p

= m

2
A2
[
γ 2 sin2(γ t − δ) + ω2

0 cos2(γ t − δ)
]
. (30)

Since A depends on α, E also depends on this, but does not damp out.
Second, we obtain the Schrödinger solution for the critical-damped driven harmonic

oscillator. By the unitary transformation, the invariant operator (14) can be represented as

e−i
pp
h̄
x Î (p, x, t)ei

pp
h̄
x = Î (p + pp, x, t)

= 1

2m

[mα

2
e

α
2 t (x̂ − xp) + e− α

2 t p̂
]2

. (31)

Then, (10) becomes

Î (p + pp, x, t)e
−i

pp
h̄
xφ(λ, x, t) = λφ(λ, x, t)e−i

pp
h̄
x . (32)

If we put

Q = x − xp (33)

and

"(λ,Q, t) = e−i
pp
h̄
xφ(λ, x, t) (34)

then

P̂ = h̄

i

∂

∂Q
= h̄

i

∂

∂x
= p̂ (35)

and (32) becomes

Î (P ,Q, t)"(λ,Q, t) = λ"(λ,Q, t). (36)

If we write

q =
√

mα

2h̄
e

α
2 tQ (37)

then (36) can be represented as the following second-order linear differential equation:[
∂

∂q
+ iq

]2

" = − 4

αh̄
λ". (38)
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The general solution of (38) for a real number λ is calculated as

"(λ, q, t) = e−i q2

2

(
Ae2

√
λ
αh̄

iq + Be−2
√

λ
αh̄

iq
)

(39)

where both A and B are integral constants.
Substitution of (33), (34) and (37) into (39) gives the eigenfunction of the invariant operator

of the critical-damped driven harmonic oscillator (14) as

φ(λ, x, t) = ei
pp
h̄
x exp

[
−ieαt mα

4h̄
(x − xp)

2
]

×
(
A exp

[
i

√
2mλ

h̄2 e
α
2 t (x − xp)

]
+ B exp

[
−i

√
2mλ

h̄2 e
α
2 t (x − xp)

])
. (40)

Although the eigenvalue of the under-damped driven harmonic oscillator is discrete, we know
that the eigenvalue of the critical-damped driven harmonic oscillator is continuous in (40).
Substitution of (40) with (12) into (8) gives

γ (λ, t) = αt

4
− i

h̄
λ(t − t0) − i

h̄

∫ t

t0

(
e−αt

p2
p

2m
− mα2

8
eαtx2

p

)
dt. (41)

From (12), (40) and (41), the wavefunction of the critical-damped driven harmonic oscillator
for the contiguous real constant λ is obtained as

�(λ, x, t) = exp

[
αt

4
− i

h̄
λ(t − t0) − i

h̄

∫ t

t0

(
e−αt

p2
p

2m
− mα2

8
eαtx2

p

)
dt

]

× ei
pp
h̄
x exp

[
−ieαt mα

4h̄
(x − xp)

2
]

×
(
A exp

[
i

√
2mλ

h̄2 e
α
2 t (x − xp)

]
+ B exp

[
−i

√
2mλ

h̄2 e
α
2 t (x − xp)

])
. (42)

The phase of this wavefunction is also represented by the classical action, composed of the
classical particular solution, and depends on the past time.

Third, we obtain the Schrödinger solution for the over-damped driven harmonic oscillator.
By the unitary transformation, the invariant operator (15), can be represented as

e−i
pp
h̄
x̂ Î (p̂, x̂, t)ei

pp
h̄
x̂ = Î (p̂ + pp, x, t)

= 1

2

(
1

m
e−αt p̂2 + mω2

0eαt (x̂ − xp)
2 +

α

2

(
(x̂ − xp)p̂ + p̂(x̂ − xp)

))
(43)

which satisfies (32). If we put

Q = x − xp (44)

and

"(Q, t) = e−i
pp
h̄
xφ(x, t) (45)

then

P̂ = h̄

i

∂

∂Q
= h̄

i

∂

∂x
= p̂ (46)

and (36) also holds, i.e.

I (P,Q, t)"(Q, t) = λ"(Q, t). (47)

If we set

q =
√

2mβ

h̄
e

α
2 tQ (48)



The quantum under-, critical- and over-damped driven harmonic oscillators 7725

(47) with (45) can be represented by the following second-order linear differential equation:

∂2"

∂q2
+ i

α

2β
q
∂"

∂q
− ω2

0

4β2
q2" + i

α

4β
" = − 1

βh̄
λ". (49)

If we express " as

"(q) = u(q)e−i α
8β q2

(50)

(49) becomes

u′′ +
1

4
q2u = − λ

βh̄
u. (51)

The general solution of (51) for a real number λ [9, 10] is

uλ(q) = A1 yo

(
q,

λ

βh̄

)
+ A2 ye

(
q,

λ

βh̄

)
(52)

where A1 and A2 are integration constants

yo(q, η) = q − η
q3

3!
+

(
η2 − 3

2

)
q5

5!
+

(
−η3 +

13

2
η

)
q7

7!

+

(
η4 − 17η2 +

63

4

)
q9

9!
+

(
−η5 + 35η3 − 531

4
η

)
q11

11!
+ · · · (53)

and

ye(q, η) = 1 − η
q2

2!
+

(
η2 − 1

2

)
q4

4!
+

(
−η3 +

7

2
η

)
q6

6!

+

(
η4 − 11η2 +

15

4

)
q8

8!
+

(
−η5 + 25η3 − 211

4
η

)
q10

10!
+ · · · . (54)

Equations (53) and (54) can be represented by the parabolic cylinder function as [9–11]

ye(η, x) = 2iη/2)
(

3
4 + i η2

)
23/4π1/2

[
Diη−1/2

(
xe−iπ/4

)
+ Diη−1/2

(− xe−iπ/4
)]

(55)

and

yo(η, x) = 2iη/2)
(

1
4 + i η2

)
25/4π1/2eiπ/4

[
D−iη−1/2

(− xe−iπ/4
)− D−iη−1/2

(
xe−iπ/4

)]
(56)

where Dµ(z) is a solution of the differential equation

d2y

dz2
+

(
µ +

1

2
− 1

4
z2

)
y = 0. (57)

From (53) and (54), the recurrence relation of the coefficients qn/n! for the term an is

an+2 = −ηan − 1
4n(n − 1)an−2 (58)

with

a0 = a1 = 1 (59)

a2 = a3 = −η. (60)

Substitution of (33)–(35), (48) and (50) into (52) gives the eigenfunction of the invariant
operator of the over-damped driven harmonic oscillator (15) as

φ(x, t, λ) = ei
pp
h̄
x exp

[
−i

mα

4h̄
eαt (x − xp)

2
] {

A yo

(√
2mβ

h̄
e

α
2 t (x − xp),

λ

βh̄

)

+ B ye

(√
2mβ

h̄
e

α
2 t (x − xp),

λ

βh̄

)}
. (61)
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Substitution of (12) with (61) into (8) gives

γ (λ, t) = α

4
t − i

h̄

∫ t

t0

(
e−αt

p2
p

2m
− eαt mω2

0

2
x2

p

)
dt − i

h̄
λ(t − t0). (62)

From substituting (12) and (61) into (62), the wavefunction of the over-damped driven harmonic
oscillator for the contiguous real constant λ is obtained as

�(x, t, λ) = exp

[
α

4
t − i

h̄

∫ t

t0

(
e−αt

p2
p

2m
− eαt mω2

0

2
x2

p

)
dt − i

h̄
λ(t − t0)

]
ei

pp
h̄
x

× exp

[
− i

mα

4h̄
eαt (x − xp)

2

]{
A yo

(√
2mβ

h̄
e

α
2 t (x − xp),

λ

βh̄

)

+ B ye

(√
2mβ

h̄
e

α
2 t (x − xp),

λ

βh̄

)}
. (63)

The phase of this wavefunction is also represented by the classical action, composed of the
classical particular solution, and depends on the past time. If f (t) is applied until the present
time t , and t is large compared to 1/α, the classical solutions are the same for all three cases,
but the quantum results are different.

3. Propagator for three cases of the damped driven harmonic oscillator

Since the Schrödinger equation (8) is a linear differential equation, the wavefunction satisfies

�(x2, t2) =
∫ ∞

−∞
K(x2, x1; t2, t1)�(x1, t1) dx1 (64)

where we call K(x2, x1; t2, t1) a propagator. If the Hamiltonian is quadratic, the propagator
can be obtained as [11]

K(x2, x1; t2, t1) = F(t2, t1)e
i
h̄
Scl(x2,x1;t2,t1) (65)

and

F(t2, t1) =
√

i

2πh̄

∂2Scl

∂x2∂x1
(66)

where Scl(x2, x1; t2, t1) is a classical action defined by

Scl(x2, x1; t2, t1) =
∫ t2

t1

L(ẋc, xc, t) dt. (67)

From (2) and (4), the classical action of the damped driven harmonic oscillator can be
represented as

Scl(x2, x1; t2, t1) = m

2
eαt ẋx

∣∣∣∣
t2

t1

+
m

2

∫ t2

t1

eαtxf (t) dt. (68)

Using (A.1)–(A.8) from the appendix with (68), we can calculate the classical action of the
under-damped driven harmonic oscillator as

Scl = m

2

(
ω

sin ωT

[− 2e
α
2 (t1+t2)x1x2

+
(
eαt2x2

2 + eαt1x2
1

)
cosω(t2 − t1)

]
+

α

2

(
eαt1x2

1 − eαt2x2
2

))
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+ 2x1

∫ t2

t1

e
α
2 (t

′+t1) sin ω(t2 − t ′)
sin ω(t2 − t1)

f (t ′) dt ′

+ 2x2

∫ t2

t1

e
α
2 (t

′+t2) sin ω(t ′ − t1)

sin ω(t2 − t1)
f (t ′) dt ′

+ 2
∫ t2

t1

dt
∫ t

t1

dt ′
e

α
2 (t

′+t) sin ω(t ′ − t1) sin ω(t − t2)

sin ω(t2 − t1)
f (t ′)f (t). (69)

Substituting (69) into (66), the amplitude of its propagator becomes

F(t2, t1) =
[

mωe
α
2 (t1+t2)

2π ih̄ sin ω(t2 − t1)

]1/2

. (70)

Thus, we can obtain the propagator of the under-damped driven harmonic oscillator by
combining (69) and (70) with (65).

Using (A.9)–(A.16) with (68), we can calculate the classical action of the critical-damped
driven harmonic oscillator as

Scl = m

2

[
α

2

(
eαt1x2

1 − eαt2x2
2

)
+

eαt2x2
2 − eαt1x2

1

(t2 − t1)

+ 2x1

∫ t2

t1

e
α
2 (t

′+t1) (t2 − t ′)
(t2 − t1)

f (t ′) dt ′

+ 2x2

∫ t2

t1

e
α
2 (t

′+t2) (t
′ − t1)

(t2 − t1)
f (t ′) dt ′

− 2
∫ t2

t1

dt
∫ t

t1

dt ′e
α
2 (t

′+t) (t − t1)(t2 − t ′)
(t2 − t1)

f (t ′)f (t)

]
. (71)

Substitution of (71) into (66), the amplitude of its propagator is obtained as

F(t2, t1) =
[

me
α
2 (t2+t1)

2π ih̄(t2 − t1)

]1/2

. (72)

Thus, the propagator of the critical-damped driven harmonic oscillator can be found by
combining (71) and (72) with (65).

Using (A.17)–(A.24) with (68), we can calculate the classical action of the over-damped
driven harmonic oscillator as

Scl = m

2

(
β

sinh β(t2 − t1)

[− 2e
α
2 (t1+t2)x1x2

+
(
eαt2x2

2 + eαt1x2
1

)
cosh ω(t2 − t1)

]
+

α

2

(
eαt1x2

1 − eαt2x2
2

))

+ 2x1

∫ t2

t1

e
α
2 (t

′+t1) sinh β(t2 − t ′)
sinh β(t2 − t1)

f (t ′) dt ′

+ 2x2

∫ t2

t1

e
α
2 (t

′+t2) sinh β(t ′ − t1)

sinh β(t2 − t1)
f (t ′) dt ′

+ 2
∫ t2

t1

dt
∫ t

t1

dt ′
e

α
2 (t

′+t) sinh β(t ′ − t1) sinh β(t − t2)

β sinh β(t2 − t1)
f (t ′)f (t). (73)

Substituting (73) into (66), the amplitude of its propagator is obtained as

F(t2, t1) =
[

mβe
α
2 (t2+t1)

2π ih̄ sinh β(t2 − t1)

]1/2

. (74)
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Thus, the propagator of the over-damped driven harmonic oscillator can be found by
combining (73) and (74) with (65).

Next, we treat the propagator using the wavefunction. If the energy eigenvalue is discrete,
the propagator can be represented by

K(x2, x1; t2, t1) =
∑
n

�∗
n(x2, t2)�n(x1, t1). (75)

If we use Mehler’s formula√
1 − z2e

2XY−X2−Y2

1−z2 = e−X2−Y 2
∞∑
0

zn

2nn!
Hn(X)Hn(Y ) (76)

and the wavefunction of the under-damped driven harmonic oscillator, equation (24), (75)
gives its propagator as (65) combined with (69) and (70).

If the energy eigenvalue is continuous, the propagator can be obtained as

K(x2, x1; t2, t1) =
∫

�∗(x2, t2, λ)�(x1, t1, λ) dλ. (77)

If we use the formula∫ ∞

−∞
ei2λ(X−Y )eiλ2

dλ =
√

π

i
e−(X−Y )2

(78)

and the wavefunction of the critical-damped driven harmonic oscillator, equation (42), (77)
gives the propagator as (65) combined with (71) and (72). If we use Erdelyi’s formula [9–11]

i

2

∫ c+i∞

c−i∞

[
Dµ(x)D−µ−1(iy) + Dµ(−x)D−µ−1(−iy)

] t−µ−1

sin −µπ
dµ

= −
√

2π(1 + t2)−1/2 exp

(
1

4

1 − t2

1 + t2
(x2 + y2) + i

txy

1 + t2

)
(−1 < c < 0 , | arg t | < π/2) (79)

and the wavefunction of the over-damped driven harmonic oscillator, equation (63), with (55)
and (56), (77) gives the propagator as (65) combined with (73) and (74).

4. Summary and conclusions

In this section we summarize and discuss the results obtained in the previous sections. In
section 2, we reviewed the classical-damped driven harmonic oscillator. We selected the Kanai
Hamiltonian among the innumerable ones which give the same classical-equation motion. It
is well known that they are connected by a canonical transformation with each other [7]. We
know that the three cases of the damped driven harmonic oscillator, i.e., under-, critical- and
over-damping, can be determined by the damping constant and frequency. The under-damped
driven harmonic oscillator has oscillatory motion, but the critical- and over-damped driven
harmonic oscillators do not. In order to calculate the particular solutions, we obtained the
Green functions with the one- and two-point boundary conditions for the three cases in the
appendix. With these, we obtained the general solutions of the three systems. It is well known
that the solutions of the systems become the particular solutions when t is sufficiently large
compared to 1/α.

We treated the wavefunctions of the three cases of the damped driven harmonic oscillator.
The quantum Hamiltonian can be found as a corresponding classical one in which the
canonical variables are replaced by the corresponding quantum operator. Although there is
one Schrödinger equation for the damped driven harmonic oscillator, three classical solutions
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emerge depending on the damping constant and the frequency. To obtain the wavefunction,
we determined the quadratic invariant operators and calculated their eigenfunction. Here, we
showed that for the under-damping case, the invariant operator can be expressed in terms of
creation and the annihilation operators, and the differential equation for solving the eigenvalue
equation is related to the time-independent Schrödinger equation of the simple harmonic
oscillator. Thus, its eigenfunction was obtained as the wavefunction of the simple harmonic
oscillator.

For the critical-damping case, the differential equation for solving the eigenvalue equation
is related to the Schrödinger equation of the free particle. Thus, its eigenfunction was obtained
as the wavefunction of the free particle. For the over-damping case, the differential equation
for solving the eigenvalue equation is related to the Schrödinger equation of the harmonic
parabola potential system [10]. Thus, its eigenfunction is obtained as the wavefunction of the
harmonic parabola potential system. We found that the eigenvalues of the oscillatory system,
i.e., the under-damping system, are discrete, but those of the non-oscillatory systems, i.e., the
critical- and the over-damping systems, are continuous. The phase factors for the three cases
can also be obtained by the Schrödinger equation and their wavefunctions, related to their
classical actions.

In section 3, we evaluated the propagator for the three cases of the damped driven harmonic
oscillator. It is well known that the propagator of the quadratic Hamiltonian has an exponent
composed of the classical action. Thus, with the calculation of the classical actions of the
three cases, we obtained both the exponent and amplitude of their propagators. We checked
the calculation of the propagator of the under-damped driven harmonic oscillator with its
wavefunction using Mehler’s formula. The calculations of the propagators of the critical- and
over-damped driven harmonic oscillators were also checked with their wavefunctions using
Gauss’ and Erdelyi’s formulae, respectively.

The non-oscillatory systems, i.e., the critical- and over-damped driven harmonic
oscillators, look like the driven free-particle and harmonic parabola potential systems,
respectively. Their classical motion is monotonic. Thus, their quantum behaviour is treated
with appropriate boundary conditions. Since their classical results are canonically related to
the driven free-particle and harmonic parabola potential systems, respectively, their quantum
behaviour with appropriate boundary conditions also has an associated unitary relation. Using
our results, in the near future, we plan to carry out quantum mechanical studies of these
non-oscillatory systems with appropriate boundary conditions.
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Appendix. Classical survey of a damped driven harmonic oscillator

There are three general cases of the solution of (4): the under-, critical- and over-damped
driven harmonic oscillators. Let us first consider the under-damped case, equation (5), which
is

−ω2 ≡ α2

4
− ω0

2 < 0. (A.1)

The general solution of (4) is

x(t) = e− α
2 t (Aueiωt + Bue−iωt ) + xp(t) (A.2)
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where the particular solution xp(t) is (if the boundary conditions are of the two-point type)

xp(t) =
∫ t2

t1

G(t, t ′)f (t ′) dt ′. (A.3)

Here the Green function G(t, t ′) is

G(t, t ′) =
{
G1(t, t

′) for t > t ′

G2(t, t
′) for t < t ′

(A.4)

with

G1(t, t
′) = e

α
2 (t

′−t) sin ω(t1 − t ′) sin ω(t − t2)

ω sin ω(t1 − t2)
(A.5)

G2(t, t
′) = e

α
2 (t

′−t) sin ω(t2 − t ′)sin ω(t − t1)

ω sin ω(t2 − t1)
. (A.6)

If the boundary condition is of the one-point type, then

xp(t) =
∫ t

t0

G(t, t ′)f (t ′) dt ′ (A.7)

where

G(t, t ′) = 1

ω
e− α

2 (t−t ′) sin ω(t − t ′). (A.8)

The second case, i.e., the critical-damped harmonic oscillator, equation (6), is

α2

4
− ω0

2 = 0. (A.9)

The general solution of (4) is

x(t) = e− α
2 t (Ac + Bct) + xp(t) (A.10)

where the particular solution xp(t) is (if the boundary conditions are of the two-point type)

xp(t) =
∫ t2

t1

G(t, t ′)f (t ′) dt ′. (A.11)

Here the Green function G(t, t ′) is

G(t, t ′) =
{
G1(t, t

′), for t > t ′

G2(t, t
′) for t < t ′

(A.12)

with

G1(t, t
′) = e

α
2 (t1−t ′)(t1 − t ′)(t − t2)

(t1 − t2)
(A.13)

G2(t, t
′) = e

α
2 (t

′−t)(t2 − t ′)(t − t1)

(t2 − t1)
. (A.14)

If the boundary condition is of the one-point type, then the particular solution is

xp(t) =
∫ t

t0

G(t, t ′)f (t ′) dt ′ (A.15)

where

G(t, t ′) = (t − t ′)e− α
2 (t−t ′). (A.16)
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For the third case, i.e., the over-damped driven harmonic oscillator, equation (7), is

β2 = α2

4
− ω0

2 > 0. (A.17)

The general solution of (4) is

x(t) = e− α
2 t (Aoeβt + Boe−βt ) +

∫ t2

t1

G(t, t ′)f (t ′) dt ′ (A.18)

where the particular solution xp(t) is, if the boundary conditions are of the two-point type

xp(t) =
∫ t2

t1

G(t, t ′)f (t ′) dt ′. (A.19)

Here the Green function G(t, t ′) is

G(t, t ′) =
{
G1(t, t

′) for t > t ′

G2(t, t
′) for t < t ′

(A.20)

with

G1(t, t
′) = e

α
2 (t

′−t) sinh β(t2 − t) sinh β(t1 − t ′)
β sinh βT

(A.21)

G2(t, t
′) = e

α
2 (t

′−t) sinh β(t2 − t ′) sinh β(t1 − t)

β sinh βT
. (A.22)

If the boundary condition is of the one-point type, then

xp(t) =
∫ t

t0

G(t, t ′)f (t ′) dt ′ (A.23)

where

G(t, t ′) = 1

β
e− α

2 (t−t ′) sinh β(t − t ′). (A.24)

We know that if f (t) is applied until the present time t , the particular solution xp(t) does
not depend on the damping factor in the three cases of the damped driven harmonic motion.
Thus, if t is large compared to 1/α

x(t) = xp(t) (A.25)

which does not depend on the initial condition. Although the form of the Green function is
different for each of the three cases, their particular solutions have the same form. For example,
if the driving force is

f (t) = f0 cos(γ t) (A.26)

the particular solution can be calculated as

xp(t) = A cos(γ t − δ) (A.27)

where, in the three cases of the damped driven harmonic motion, the amplitude A is

A = f0√
(ω2

0 − γ 2)2 + γ 2α2
(A.28)

and the phase difference between the driving force and the resultant motion is

δ = tan−1

(
αγ

ω2
0 − γ 2

)
. (A.29)
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If the driving force is applied in just the finite time interval [t0, t1], the particular solution is

xp(t) = e− α
2 t

∫ t1

t0

1

ω
e

α
2 t

′
sin ω(t − t ′)f (t ′) dt ′ (A.30)

xp(t) = e− α
2 t

∫ t1

t0

(t − t ′) e
α
2 t

′
f (t ′) dt ′ (A.31)

and

xp(t) = e− α
2 t

∫ t1

t0

1

β
e

α
2 t

′
sinh β(t − t ′)f (t ′) dt ′ (A.32)

for the three cases of the damped driven harmonic motion, respectively. Here, we know
that if t is large compared to 1/α, xp(t) is also damped out and becomes zero, as does the
complimentary solution, i.e., the first term on the right-hand side of (A.18).
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